

ARPA-E Power Technologies Workshop February 9th, 2010

Bulk GaN Materials for Next Generation Power Electronics

Dr. Keith Evans
President & CEO
Kyma Technologies, Inc.
Raleigh, North Carolina

Acknowledgements

- AFRL (J. Blevins, G. Via)
- ARL (K. Jones, T. Zheleva)
- ARO (W. Lampert, J. Prater, J. Zavada)
- Auburn University (M. Park, J. Williams)
- DOE/RPI (C. Wetzel)
- DOE/USCAR (S. Rogers)
- MDA (C. Avvisato)
- NCSU (M. Johnson, J. Muth)
- NRL (C. Eddy, K. Gaskill)
- SNL (A. Allerman)
- US Congress (David Price, 4th District NC)

Motivating Statements & Questions

www.galliumnitride.com

400mm diameter

450mm diameter

Market Challenge

300mm diameter

 Al_2O_3

200mm

AIN

Thermodynamic & Kinetic Ease, Volume Experience, Size, Crystalline Quality Early US DOD investment in bulk SiC,

www.kymatech.com

www.galliumnitride.com

- Major foreign interest in bulk & template GaN substrate technology
- Next generation HEV needs >10⁶ bulk GaN substrates/year

Baliga's Figure of Merit (BFOM)

Considers on resistance & break down voltage

Figure of Merit	Expression	ες is the static dielectric constan
Combined (General)	$k_{th} \epsilon \mu_e v_s E_c^2$	μ is the mobility
Keyes (Power Density & Speed)	$k_{th} [c v_s / (4\pi \varepsilon_s)]^{-1/2}$	${f E}_{f g}$ is the bandgap
Baliga FOM (Resistive Losses)	$\varepsilon \mu_e E_g^3$	${f V_g}$ is the gate drive voltage
Baliga High Frequency FOM (Switching Losses)	$\mu_e E_b^2$	${f E}_{f b}$ is the breakdown field

R. W. Keyes, "Figure of Merit for Semiconductors for High Speed Switches," *Proc. IEEE*, vol. 60, pp. 225-232, 1972
B. J. Baliga, "Semiconductors for High-Voltage, Vertical Channel Field-Effect Transistors," *J.Appl.Phys.*, vol. 53, no. 3, pp. 1759-1764, 1982
B.J. Baliga, "Power semiconductor device figure of merit for high – frequency applications," *IEEE Electron Device Lett.*, vol. 10, pp. 455-457, 1989
T. Ayalew, "SiC Semiconductor Devices, Technology, Modeling, and Simulation," http://www.iue.tuwien.ac.at/phd/ayalew/node76.html

Factor	Si	SiC	GaN
Baliga Figure of Merit	1	223	868
Dislocation Density (cm ⁻²)	< 1	10 ³	10 ⁴ -10 ⁶
Micropipe Density (cm ⁻²)	0	30	0
Stacking Fault Energy (mJ/m²)	55	14.7	20
Crystalline Polytypes	1	>245	2
Diameter	12"	4"	2"

An additional advantage of GaN over Si and SiC is the ability to bandgap engineer via growth of epitaxial heterostructures

▶ NCSU & Georgia Tech

Thermal Conductivity vs. Dislocation Density

Accurate dependence of gallium nitride thermal conductivity on dislocation density, by C. Mion, et al., APL 89, 092123 2006.

Thermal Conductivity vs. Dislocation Density

Accurate dependence of gallium nitride thermal conductivity on dislocation density, by C. Mion, et al., APL 89, 092123 2006.

Un-passivated, simple Schottky diode demonstration, from collaboration with NCSU (Mark Johnson), Auburn University (Minseo Park), & Sandia National Laboratories (Andy Allerman)

From: Johnson et al., IEEE Trans. Electron Dev., 49, 32 (2002).)

Native GaN Substrate Progress

Single wafers

Boules

WS-1 "Substrates for Nitride Epitaxy" IWN2008, Switzerland 2008

Comparing Bulk GaN Crystal Growth Technologies

From Iza Grzegory's Poem Based on 6th International Workshop on Bulk Nitride Semiconductors

HVPE Bulk GaN

- They grow quite fast and thick
- However not too smooth
- One really needs a trick
- To make them really good
- It seems that what they need
- To grow in perfect way
- It's just a perfect seed
- Available some day

Ammonothermal Bulk GaN

- What does ammono show
- That crystals really grow
- Although the growth is slow
- They have not any bow

Source: http://www.unipress.waw.pl/iwbns6/fun-concl.html

Comparing Bulk GaN Crystal Growth Approaches

Qualitative Feature vs. Growth Approach	HVPE	AMT	AMT on HVPE Seed	HVPE on AMT Seed
Growth Rate	\$\$\$\$	₽		
Electrical Conductivity Control	\$\$\$\$	₽)		
Seed Generating Potential		999		
Growth Parameters (P, T)	即即即即	₽		\$\$\$\$
Time to Market	引引引引	₽)		
Substrate Quality	\$\$\$		E E E	
*Bulk GaN Process Figure of Merit (+)	21	11	9	24
*Bulk GaN Process Figure of Merit (x)	1536	12	6	4096

*FOM Calculation Assumes \$ \$ \$ \$ \$ = 4, \$ \$ \$ \$ = 3, \$ \$ \$ = 2, \$ = 1

Summary & Conclusions

- GaN's importance will grow and grow
 - GaN is 2nd only to Silicon in importance
 - Bulk GaN will become cheap and readily available
- Unfettered access to bulk GaN will drive device and system innovation of unprecedented long term importance
 - The market will support only a few winners
- Major US investment in bulk GaN represents a great opportunity that cannot be overlooked